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Applications and time-domain solution of higher-order parabolic
equations in underwater acoustics

Michael D. Collins
a )

Naval Ocean Research and Development Activity. Stennis Space Center. Mississippi39529

(Received 9 February 1989; accepted for publication 19 May 1989)

A higher-order parabolic equation and the corresponding higher-order time-domain parabolic
equation are derived from a Pad6 series and solved numerically. These models provide accurate
solutions for problems involving very-wide-angle propagation (e.g., propagation in the

nearfield or over a hard ocean bottom); propagation in domains in which sound-speed
variations are large (e.g., propagation in deep water, deep within the ocean bottom, in high-
speed ocean bottoms, and possibly - Tdifferent wave types); and propagation out to very long
ranges. The possibility of modeling elastic wave propagation with a similar approach is

considered.

PACS numbers: 43.30.Bp, 43.20.Bi

INTRODUCTION where the point x,, is the source location. The complex wave-

The parabolic equation (PE) hds undergone extensive .umber K k+ /13 j k is usc to account for sdimc t!cs-__

development since it was first applied to underwater acous- The wavenumber is k = wic, 7 = (40ir log,,, e) # is the

tics' including improvements in accuracy and implementa- attenuation in decibels per wavelength (dB/A), p is the den-

tion in the time domain. The phase errors of PE solutions, sity, and c is the sound speed.
We assume that variations in azimuth are negligible and

which approximate the solution of the wave equation, were e asm t variao dinazimuth neigle
reduced significantly with the introduction of the wide-angle solve Eq. (1) in cylindrical coordinates, with z being the
PE.2' Although various generalizations of the wide-angle depth below the ocean surface and r being the horizontal
PE have been considered,5-7 the aperture limitation of the distance from a source at the depth . Variations in range
PE has remained an issue of concern. The time-domain para- are assumed to be sufficiently weak so that ap/ar can be

bolic equation (TDPE)1 - 2 allows one to perform pulse ignored, which simplifies Eq. (1) to

propagation calculations without Fourier synthesis. The 3P 1.p 2p a 13P
TDPE has been extended to handle interface conditions,9  z p 3Z az r -r

nonlinear propagation,' density variations and sediment at- - (2/r)6(r)b(z - zo). (2)
tenuation, and wide-angle diffraction and sediment disper-
sion. 12 We define Q = v P, and for r > 0 Eq. (2) becomes

In this article, a higher-order PE based on a Pade series7  a 2Q 1 ap aQ -- Q+ Q + KQ = 0 .

is shown to provide solutions comparable in accuracy to nor- z 2  p -z ±z Or (3)
mal-mode solutions for problems involving very-wide-angle We assume that r> r, where kr >> 1, and drop the O(r - 2 )

propagation, large variations in sound speed, and propaga- term in Eq. (3) to obtain the farfield equation
tion out to long range. Since the Pade series is composed of
rational linear terms, the higher-order PE is easy to solve a 2Q - - -Q + +Q K-Q=.0 (4)
numerically. The corresponding higher-order TDPE is z- p az az r
solved numerically and compared with a wide-angle TDPE For range-independent domains, Eq. (4) factors exactly to
designed for propagation in shallow wateri.'2 The possibility
of applying the Pad6 series to derive a PE for elastic wave Q_ ik 1 - Q+ (5)
propagation is investigated. ar- - k

1. THE HIGHER-ORDER PE where c, is a reference sound speed, k,, = /c,,, and
A time-harmonic steady state is assumed, and the a-2 1 p d

acoustic pressurep is factored asp(x,t) = P(x)exp( - icot), L -. (6)
where t is time, x is the Cartesian position vector, and (o is the az2  p az az
circular frequency. The complex pressure P is assumed to Equation (5), which we refer to as PE, , is an accurate ap-
satisfy the pressure-release boundary condition P = 0 at the proximation for many range-dependent problems in under-
ocean surface, the outgoing radiation condition at infinity, water acoustics and can be solved in terms of outgoing cou-

and the reduced wave equation pled modes.'"
PE derivations are based on approximations of the func-pV, I 1/p) VP] + K P = - 4 rb (x - x,), ( 1) ) y -. X If i I -th a t eT y a ,r s

+l 1- x I r !-. . 1 e'ich as the Tay'or ,,eries,

Present addrcs: Naval Research L.aboratory. Washington, DC 20375. \' 1 + x -- = x- '
2  ± ,. (7)
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If K-k, the first term of this series and the approximation Pad6 series is fairly accurate well beyond the radius of con-
K +vergence of the Taylor series near x = 3.

The Pade series gives the higher-order PE
give the narrow-angle PE du , L_+_Kk_____

(9) - ik, +"(LK 2-k ) U, (13)
dr ik2ko rk2 b.,(

ar kgwhich we refer to as PE,,. Equation ( 13 ) carn be solved with
where Q = Uexp(ikr). The terms on the right side of Eq. the e ferti irection Thi aa h ivolves

(9) (from left to right) are: the refraction term. which ac- the method of alternating directions. This approach involves

counts for variations in sound speed; the loss term, which nsteps with thejth step requiring the solution ofthe equation

accounts for sediment attenuation; and the diffraction term, [k 2 + b,,, (L+ Kd2-- k) U

which accounts for the vertical component of propagation. . dr
The first two terms of the Taylor series have been used to ika,, (L + K 2 - k'2) ) U. (14)

derive a wide-angle PE.5 However, the higher-order PE's -s . ( 1- K f - d dpU.
based on the Taylor series are relatively inefficient. Since the we sole Eq. (s discreiin th dppendenceTayor eris dveres or ~ >1, anyters i th seies with Galerkin's method as described in the Appendix. TheT a y lo r se rie s d iv e rg e s fo r jx j > 1 , m a n y te rm s, in th e se ries re u t n sy e m i th n ol d w th C a k N c s n t -
are required for problems involving large differences in resulting system is then solved with Crank-Nicolson inte-
sound speed or very-wide-angle propagation. Furthermore, gration.
higher-order PE's based on the Taylor series are difficult to A special version of PE, has been considered for appli-
implement because x is raised to powers, which results in cation in shallow water.2 Since sound-speed variations are

operators raised to powers. very small in shallow water, a signal trapped in a shallow
ocean is influenced more by diffraction than refraction. TheThe wide-angle PE is bas .d on a ,dtional linear Pade hlo-ae eso fP 1

app-oximation. A generalization of the wide-angle PE that is

based on a ratio of polynomials' is difficult to implement dU U2ik, U_-= i(k .k,)U-- hffilkc -U U, (15)
because powers of x are involved. A generalization of the dr 4k + L
wide-angle PE that involves only first powers is based on the is obtained from PEI by assuming that
following Pade series': I(K 2 - k (2) U[ I <LU I in the water column. Equation (15)

a, ± has the same refraction term as Eq. (9) but an improved
+ X I + + O(x-"'), (10) diffraction term.

To illustrate the ability of PE,, to handle long-range and

where n is the number of terms in the Pad expansion and very-wide-angle propagation, we consider a waveguide 250

a, [2/,,2n + I )]sin-[jrr/(2n + 1)1, (11) m thick with pressure-release top and bottom boundaries in
, s2 j/(2n +1)]. ( which c = 1500 m/s. A 25-Hz point source is placed at

z = 25 m, and we take c,, = 1500 m/s. The eight normal
Since the Pade series is valid outside the radius of con- modesfor thisproblem propagateat approximately 7, 14,21,

',ergence of the Taylor series, relatively few terms are needed 29, 37, 46, 57, and 74 L.kg from horizontal. (he PE, solu-
for x, _ 1. We illustrate this in Table 1. The four-term Tay- tions (initialized with the normal-mode solution at r = 0)
lor series is better than the one-term Pad series for x < I, but are compared with the normal-mode solution in Fig. 1. We
the one-term Pad& series is better for x > 1. The two-term observe that the PE,, solutions break down very rapidly with
Pade series and the four-term Taylor series are both correct r for small n. However, the PE,, solution is nearly perfect at
to O(W¢) for small x. Yet the two-term Pad series is substan- r = 4 km.
tially better than the four-term Taylor series. The three-term We now consider a realistic example that illustrates an

application of PE,, for low-frequency underwater acoustic
propagation in deep water. In the water column, we assume

the Munk sound-speed profile"4

TABLE 1. Comparison of Taylor and Pad scrws. _=I+t _ +_2 H 11_

Four-term One-teruI Two-terni I hree-term ( 16)
x ylor adi Pade Pade ,1 4 X - I where u = 0.0071, c,, = 1500 m/s, Zch = 1000 m, and

) 25 0.118 01 011765 0118 03 0.11803 0.11803 H = 1200 m. The ocean depth is 5000 m. In the sediment,
050 0 22412 0R22222 0.22472 0.22474 0.22474 c = 1850 m/s,p = 1.5 g/cm', and 13= 0.5 dB/A. A 10-Hz
0751 0 1 ,Y, 70 0, 315 74 0.322 74 0.322S7 0.322 ,8 point source is placed at z = 200 m, and we take co = 1500
1 (X) [Y;98 44 0. 4W W(x 0413 79 0).414 20 0).414 21125 0.456 4Q 0,476 1) 043704 (.499 0 5(X.4 ) m/s. The homogeneous half-space field'" is used to initialize

1 501 0,481 93 0 545 45 0.579 31 0581 05 0581 14 the field at r = 400 m. The Lloyd's mirror beams produced
1.75 0,46078 0.08 71) 0.655 23 0.65( 12 0.658 31 by the source propagate at approximately 11, 34, and 70 deg.
2 ) 0 375 () 0.720 WX 0.79584 0.802 21 ((02 78 PE, should accurately account for the I 1- and 34-deg beams
2.5)) 0 .0Sf' €' , ",,0 2 ., P 2 "" ' ,o '94 0187(0 832.,5 0.81401 023 76 '.'-35 .036 49 for well beyond r = 20 km. From the PE, and PE, solutions
3.0() 1.101 56 0.857 14 0. 3 61 0,08 17 1.(X8 (W appearing in Fig. 2, however, we observe that PE, cannot

handle the 70-deg beam, which is partially reflected from the

1098 J Acoust Soc Am. Vol 86. No 3. September 1989 Michael D Collins. Higher-order parabolic equations 1098
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30 _ _ _ _ _ _ _ _FIG. 2. Trjinmission loss at z - 20(0 in for a 10-11z source in deep wkater
The dahiied curve is the PE, solution. The solid curve is the PE, solution.

-0

- II. THE HIGHER-ORDER TDPE

+ /..rr .; Just as refraction is less important than diffraction for a;=. o 'i ' if' ii,!, .. ..ii ,!. !  [)['" ! iisignal trapped in shallow water, the effects of attenuation

and dispersion are less important than refraction and dif-" +;, I ! ii i isignal torape nsalwwtr the efcso attenuation/dseso prtri h DEo
6 [fraction for niust problems. Thus we do not derive correc-

tions for the attenuation/dispersion operator in the TDPE of
11) 1, Ref. 12. We assume that K is real (no attenuation) and that c

0 1 2 is independent ofa) (no dispersion) in the analysis and write
(b) Range (kin) Eq. (13) as

30 - u - a, w + f , L
r = 2 - U, (17)

dr 7'jt2%W + b,,,L
40 where

50o .2 2. . .Ir (18)

a)j

60" (19)

70 _.,, --1 91 20)
C1 1

o0 2., + b,, G - ,;(c) Range (ktm) 6j, = bj.,,. (21)

FIG. I. Transmission loss at z = 25 m for a 25-Hz source in a waveguide To obtain a higher-order TDPE that is easy to solve numeri-
with perfectly reflecting boundaries. The dashed curves are the normal cally, we write Eq. (17) in the form
mode solution. The solid curves are the PE, solutions for (a) n = 2, (b)

n =4, and (c) n = 6.

40

ocean bottom and makes a significant contribution to the
field for 5 km < r < 15 km.

Since the parabolic approximation is based on an expan- 2
-ion about a reference wavenumber, it is not obvious that this
approximation can be ger, ralized to elastic media in which A -MoW
waves of different speeds exist. To investigate ie possibility S s2 i -

Te
of generalizing PE,, to handle solid ocean bottoms, we con-
sider a problem for which c =1500 rn/s in the water and the/

ocean depth is 200 m. In the fluid ocean bottom, c = 1700 i :]m /s, p = 1.5 g /cm ',  .. :,(1 /7 _ - n d / A rsn -17 nnint Po -'- -

source is placed at z = 25 m. The PE, solution for c, = 1500 0 2 4 6 8 to

- ang+e (ki)
m/s and the PE, solution for c,, = 300 m/s appear in Fig. 3.
The agreement of the solutions suggests that a higher-order FIG 3. Iransmission loss at z - 25 m for a 50-i source in shallow "ater.

elastic PE based on the Pade series would handle both The dashed curve i, the PE.solution for c,, 15(W m/s. The solid curve i,
compressional and shear waves simultaneously the I'E,, solution for c,, 3() m/s.

1099 J AcoList Soc Am Vol 86, No 3, September 1989 Michael D Collins: Higher-order parabolic equations 1099



9U= 1(1 , (3,,-a,6, /)J, L
-- - ho± . . . . )U. (22)

or I

We define

u(rzt) J U(r,z,d)exp( - iot)dto (23) o

and invert the Fourier transform in Eq. (22) to obtain, the ,
higher-order FDPE:

d~u a, b,. du Z. V
r- -. , '(at,, +6+,,L/ )- , 24))

d I IY." - ( 'd 2)+ 6.. 9t200 400 600 9500 1000

which we refer to as TDPE,,. (a) Re'lati\e t inot(lns)

The alternating directions solution of TDPE,, requires
numerical solutions for each of the following n + I equa-

tions:

du 0, (25) "
o r dt

da'u cdu du a767. .
7"., -6 L-- -13"., " L- 26) 0 '- -,

drdt '" &d" t

Since Eq. (25) is similar to the refraction term of the shal- "

low-\water TDPE, and Eq. (26) is similar to the diffraction .
term of the shallow-water TDPE, the numerical solutions _l
developed in Ref. 12 can be modified slightly to obtain the o200 l,) ,)) 10)0 80)0,

time-domain solution of Eq. (22). In contrast, the time-do- (b) Pet itiv 1 t irtw(1n..l

main solution of Eq. (17) requires the numerical solution of
n equations similar to Eq. (26) as well as n third-order equa-
tions that are much more complicated than Eq. (25). A

As in Ref. 12, the source functionf(t) is assumed to 2
have compact support, and a time window t, < t < 1. that I
contains the signal at all times is chosen. The boundary con- F_ . ,, ,
dition u = 0 is imposed at the pressure-release surface, deep ' o '--.-.. .
within the sediment at z = z,. from which no energy returns - , ,;

to the water column due to attenuation, and after the signal ,
has passed the observer at t = t,. The boundary conditions "

u au/at = 0 are imposed before the signal is detected at Z

t= t. Equation (25) is a first-order hyperbolic equation -i

that can be solved with the Lax-Wendroff scheme. " Galer- 0 200 400 600) 800 t000

kin's method is used to discretize depth dependence in Eq. (C) Pelatie tiinetis)

(26) as described in the Appendix. The resulting equation is FIG 4. Time ,erie, at r - 5(X) m and -- 2(X)m tonr a Gausian puke m a
then solved with Crank-Nicolson integration in r using cen- wavcguidc with perfectly reflecting houndaries. The tla,,hed cur.s are the

tered differences in t while sweeping from t = t, to t = t2 . iniage soution. The solid curves are tte (a) TDPEI. (hI TD13E,. and (C)

To demonstrate the ability of TDPE,, to handle very-

wide-angle propagation, %%e consider a waveguide of thick-
ness 300 m with pressure-release top and bottom boundaries
in which c = 1500 m/s. The Gaussian source merical results. While performing the calculations for the

1(t) = exp[ - (vt) 1 is placed at z = 25 m, where v = 150 previous example. however, we observed a new stability con-
s '. The image solution, which is exact, is used to initialize dition involving the grid spacings Az and At. In a homoge-

the field at r = 200 m, and we take c, = 1500 m/s. The neous medium, the numerical solution of the diffraction op-

TDPE, TDPE., and TDPE, solutions are compared with erator is unstable for Az = c,,At and n > I. The solution
the irna s'lution in Fig. 4. Each of the solutions is very appears to be stable for all n if Az > Ac,,At. where numerical
accurate for the first art ivals. which propagate at small an- experiments give A - 1.4.
a1e, However. the rer, mt itpiusc. with i tor the later Fo demonstrate the ability of TDPE,, to handle large

arrivals, which propagate at larger angles. variations in sound speed. we consider an ocean of depth 400
In past studies of the TDPE, a stability condition for the m in which c increases linearly from 1500 m/s at z = 0 to

numerical solution of the refraction operator has been dis- 1600 m/s at z = 400 m. In the sediment, c= 170 tn/s.
cussed. However, the numerical solution ,t the diffraction p = 1.5 g/cm', and f3 0.5 dB/A. The Gaussian source
operator appeared to be unconditionally stable based on nu- function with v = 150 s is placed at z = 50 m. and we take

1100 J Acoust Soc. Am, Vol 86, No. 3. September 1989 Michael 0. Collins Higher-order parabolic equations 1100



c = 1500 m/s. The half-space field is used as an initial con- large phase errors. The shallow-water PE, solution is better,

dition at r = 100 m. The plane-wave loss operator of Ref. 12 but it too has a large error. The excellent agreement of the

is used to model attenuation. However, we have found that TDPE, and PE, solution, demonstrates the ability of
greater accuracy is obtained by using c rather than c, in the TDPE, to accurately handle pulse propagation in deep wa-

loss operator. Sediment dispersion is neglected. The re- ter and shows that the plane-wave loss operator is accurate

sponse to f is convolved as in Ref. 12 to obtain the response for this problem.

to a 50-Hz time-harmonic source. Transmission loss for the
TDPE, PE, narrow-angle PE, and shallow-water PE, solu-

tions appears in Fig. 5. The narrow-angle PE solution has III. CONCLUSIONS

The phase error problem of the PE model has been com-
pletely eliminated. The higher-order PE based on a Pade
series handles problems involving very-wide-angle propaga-

40 rtion. propagation in the nearfield, propagation out to long
range, and propagation in domains in which sound-speed

0 I-variations are large. Numerical results suggest that the ap-

proach might be useful for elastic wave propagation for
60 i, problems invoking a superposition of compressional and

S ' ' shear waves. The higher-order PE was solved in the time

, , . domain, and a new stability condition was observed.

80-
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APPENDIX: DEPTH DISCRETIZATION WITH
40 GALERKIN'S METHOD

Galerkin's method is effective for discretizing the rela-50

tively complicated depth operators in Eqs. (14) and (26),
which have coefficient functions that may be discontinuous

1 60 4
" .....* and involve derivatives. The depth grid points are defined as

70 z, = iAz. The basis functions T4, (z) vanish for z - z, I > Az,
increase linearly from 0 to I over z, < z < z, and decrease

90 v from 1 to0overz, <z<z, . Wedefine u, (rt) = u(r,z,,t)
S/as well as 0, = O(z, ) and P, = 4(z, ) for arbitrary func-

go0 :;tions 0 and 4'. The basis functions provide the approxima-
0 4 6 8 to tions

(b) Range (krn)

u(r,z,t) - u, (r,t) I, (z), (AI)

9( Z) 6 D, T, (z), (A2)
40

50 (Z) idr e ys ti, E (z). (A3)

a 60 rThe following orthogonalit m condition is ired to hold for
,-, all i:

-~~p "z b,, L"'i- '80 f l rld
-1[ i( y3 ,.,, - -) d,, u - =0 ( 4

0 6 8r10 y/. " Or

(c) Rnge (ill)Equation (26) is discretized by substituting Eq. (AI) for u

U 1. . ra~ruson os a z 90rnfo a 0-1zsooceina rfinfng and Eqs. (A2) and WA) for the coefficient functions into
ocan. I hea,,cdco~r~e ac the IT , olution. 1-he olid curve are lc (it) Eq. (A 4). The follow ing approxim ations are obtained for

narrow,-anglc PE. ()I )hallo%%-, alcr IT,. and ( c 1 TIT, ,,olulioni',. the depth operators:

1101 J. Acoust Soc Am , Vol 86. No 3, September 1989 Michael D Coilhns: Higher-order parabolic equations 1101



Ou 1 Z, 0 + u60,+0, U, + u11 +,(A5)
12 12 12

0 ___ , 20, + 0 u, (A6)
di z (Az) ( z)- iz
dE) du ((D, +, 2 +2 ,)(0, 0,

dz dz z 6 (.z) "

+ (0,- 0, + 2P,(20, -0, -0,+ )+V,+ (0, -0,,
+ 6(AZ)

2

(P, + 2V,)(E), -,)-± u . (A7)
6(Az) 2  +I
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